Вопросы        01.03.2024   

Шина usb обеспечивает одновременное подключение. USB (Universal Serial Bus, универсальная последовательная шина). Сравнение FireWire и USB

Шина USB предназначена для сопряжения ПК с различными устройствами типа телефона, факса, модема, сканера, автоответчика, клавиатуры, мыши и т.д. Эта шина для настольных систем отвечает требованиям технологии plug and play и является среднескоростной, двунаправленной дешевой шиной, повышающей взаимосвязность компонентов ПК и расширяющей его архитектуру.

Основные свойства шины USB:

Возможность подключения до 127 физических устройств;

Автоматическое распознавание периферии;

Образование различных конфигураций;

Реализация как изохронных, так и синхронных типов передач с широким диапазоном скоростей;

Наличие механизма обработки ошибок;

Управление питанием и т.д.

Технология шины USB представлена на рис.7.1 и имеет многоуровневую звездообразную структуру (древовидную конфигурацию).

Рис.7.1. Топология шины USB

Каждую звезду образует хаб (пункт присоединения), обеспечивающий подключение одного или несколько функционеров (функ), периферийных устройств. Шина USB содержит один хост (контроллер), образующий корневой уровень и управляющий работой функционеров. Хаб является основным элементом в архитектуре USB, поддерживающей соединение нескольких хабов. В состав хаба входит один верхний потоковый порт ВПП, необходимый для подключения хаба к «хвосту», и несколько нижних потоковых портов (НПП), соединяющих его с другими хабами и (или) функционерами (рис.7.2).

Рис.7.2. Общий вид хаба

Хаб выполняет следующие функции: обнаружение присоединения (отсоединения) другого хаба или функционера; управление питанием и конфигурированием устройств, подключенных к соответствующим НПП. Хаб содержит контроллер и репитер (управляемый протоколом переключатель портов между ВПП и НПП1-НПП7). Контроллер использует интерфейсные регистры для выполнения связи с хостом, который с помощью управляющих команд конфигурирует хаб и следит за его партнерами. На рис.7.3 показана система типа «рабочий стол», содержащая хабы и функционеры.

Функционер представляет собой отдельное USB-устройство, которое кабелем подключается к какому-либо порту хаба. Хаб/функционер выполняется как устройство, содержащее встроенный хаб. Каждый функционер перед его использованием должен быть сконфигурирован хостом, которое включает распределение диапазона частот и выбор специфических опций для конфигурации.

Рис.7.3. Система рабочий стол, содержащая хабы и функционеры

USB-хост (центральная ЭВМ) осуществляет доступ к USB-устройствам с помощью хост-контроллера, который выполняет следующие действия:

Координацию потоков управления и данных между хостом и устройствами;

Обнаружение подключенных (отключенных) устройств;

Сбор информации о состоянии системы;

Управление питанием.

Протокол шины выполняется следующим образом. Хост направляет по шине USB эстафетный пакет, в котором указывается тип пакета, направление транзакции (действия на шине), адрес устройства и номер конечной точки. Конечная точка – это уникально определяемая часть USB-устройства, содержащего несколько таких точек (конечных пунктов связи). Комбинация адреса устройства и номера конечной точки в этом устройстве позволяет выбрать каждую точку в отдельности. Любая конечная точка должна быть сконфигурирована перед употреблением и характеризуется частотой, временем ожидания доступа к шине, шириной полосы частот, максимальным размером пакета, типом и направлением передачи. Устройства с низким быстродействием содержат не более двух конечных точек, а устройства с высоким быстродействием – до 16 выходных точек.

После того как передача данных завершена, USB-устройство (приемник) отвечает пакетом подтверждения, в котором отмечается успешность этой передачи.

Сигналы данных D+ и D- и питание (V и G – земля) в шине USB передаются от точки к точке по четырем проводам 90-омного кабеля (рис. 7.4.) с максимальной длиной 5м. Номинальное напряжение питания – 5v.

Рис.7.4. Кабель USB

Хост (хаб) обеспечивает питанием устройства USB, которые подключены к нему. Кроме того, устройства USB могут иметь автономное питание. Питание по шине USB имеет ограниченную величину.

Шина USB обеспечивает два диапазона скоростей передачи информации: низкая скорость (1,5 Мбит/с) и высокая скорость (12 Мбит/с). Низкоскоростной режим применяется для взаимодействия с интерактивными устройствами (мышью, трекболом и т.п.), а высокоскоростной режим – с адаптером телефона, аудио- или видеоустройствами. Каждому пакету данных предшествует поле синхронизации, которое позволяет приемникам согласовывать во времени их таймеры (генераторы) для приема данных. Поле синхронизации содержит синхроимпульсы, закодированные по методу NRZI с битовым заполнением.

Связь между хостом и конечной точкой образует канал. Устройство USB может иметь конечную точку, поддерживающую только канал управления, или конечную точку, использующую канал для передачи данных.

USB выполняет следующие типы передач по соответствующим каналам в одном или обоих направлениях:

Управляющую спонтанную (непериодическую) передачу по типу запрос/ответ, используемую для передачи команд/состояния и обычно применяемую с целью конфигурирования устройства в момент его подключения;

Контейнерную передачу, случайно возникающую во времени, состоящую из большого числа данных, выводимых, например, в принтер или сканер;

Передачу прерывания (непериодическую передачу данных с низкой частотой из устройства в любой момент времени, состоящую из одного или нескольких байтов, направляемых в главную ЭВМ и требующих обслуживания устройства);

Изохронную (периодическую потоковую) передачу, обеспечивающую непрерывную связь между хостом и устройством, в реальном времени с предварительной установленной скоростью и временем ожидания.

Все устройства USB содержат конечную точку О, к которой имеет доступ по умолчанию канал управления. Информация конечной точки О описывает устройство USB и состоит из следующих частей: стандарта, использующего дескрипторы устройства, его структуры, интерфейса и конечных точек; класса устройства и сведений о поставщике. Конечная точка О применяется для инициализации и конфигурирования устройства USB.

Через каналы перемещается информация между хостом и конечной точкой с использованием буферной памяти. Различают два режима работы канала: поток – данные, не имеющий определенной структуры, и сообщение – данные, передаваемые в соответствии с заданным порядком. Системное программное обеспечение (ПО) монопольно владеет каналом и представляет его другим ПО. Пользователь ПО запрашивает передачи по каналу, ждет их и затем уведомляется о завершении передач данных. Конечная точка сигналом NAK может сообщить хосту о том, что она занята.

Потоковые каналы передают пакеты данных, не имеющих структуру USB, в одном или другом направлении (однонаправленная передача). Потоковые каналы поддерживают контейнерную, изохронную передачу и передачу прерываний.

Управляющая передача разрешает доступ к какой-либо части устройства и предназначена для обмена информацией, типа конфигурация / команды / состояние, между пользовательским ПО и функционером. Управляющая передача в общем случае содержит информацию запроса (установочный пакет), данные и возвращаемую в хост информацию состояния функционера. Установочный пакет имеет определенную структуру, состоящую из набора команд, необходимых для установления связи между хостом и устройством USB. Описание состояния устройства имеет также определенную структуру, а данные управления, следующие за установочным пакетом, не имеют какой-либо структуры и содержат информацию о запрошенном доступе. Управляющая передача выполняется как двунаправленный поток информации по каналам сообщений. Стандарт шины USB ограничивает размеры пакета данных для высокоскоростных устройств 8, 16, 32 или 64 байтами, а низкоскоростные устройства могут иметь пакет данных не более 8 байтов. Установочный пакет всегда содержит 8 байтов. Вначале (после сброса) хост использует пакет данных размером в 8 байтов, который является достаточным для стандартных операций, а после определения типа конечной точки по ее конфигурационной информации может быть использован пакет большого размера для выполнения специфических операций. Таким образом, все данные при передаче делятся на равные части (пакеты), кроме последней части, которая содержит оставшиеся данные.

В том случае, если конечная точка занята определенное время, хост будет повторять к ней доступ через некоторое время. При обнаружении ошибки хостом выполняется повторная передача.

На рис.7.5 представлена общая схема взаимодействия компонентов шины USB.

Рис.7.5. Общая схема взаимодействия компонентов шины USB

Хост (координирующий центр) содержит: системное ПО USB, поддерживающее интерфейс USB в конкретной операционной системе и поставляемое вместе с ней; ПО пользователя, необходимое для управления работой определенного устройства USB, которое входит в состав операционной системы или поставляется вместе с устройством, и контроллер, позволяющий устройствам подключаться к хосту. Устройство USB также имеет несколько уровней реализации: интерфейс шины, логику устройства (совокупность точек) и функционер (функциональный уровень устройства).

В шине USB используется метод кодирования NRZI (без возвращения к нулю с инверсией). В этом случае метод кодирования NRZI состоит в том, что если бит передаваемых данных равен 0, то происходит изменение уровня напряжения, а - если равен 1, то уровень напряжения сохраняется. На рис.7.6 показан пример кодирования данных методом NRZI.

Рис.7.6. Пример кодирования методом NRZI

Таким образом, строка нулей вызывает переключение уровней сигналов, а строка единиц образует длительные отрезки уровней без всяких переходов, что может нарушить условие синхронизации при выделении каждого бита. Поэтому при передачи данных через каждые шесть последовательных единиц вставляется нуль, чтобы гарантировать достоверное определение каждого битового интервала при приеме в наиболее худшем случае, когда передаются единичные значения битов данных. Приемник декодирует код NRZI и отбрасывает вставленные биты нулей. На рис.7.7 представлена временная диаграмма этапов кодирования данных.

На диаграмме вначале показаны необработанные данные, содержащие поле синхрокомбинаций и пакет данных, причем синхрокомбинация имеет 7 нулей и заканчивается единичным битом, после которого начинается пакет данных. Затем на диаграмме изображены заполненные данные, которые дополнительно содержат после шести единиц вставленный бит 0. В число шести единиц входит и последний единичный бит синхрокомбинации. После этого выполняется кодирование заполненных данных методом NRZI с учетом и поля синхрокомбинации. Правило заполнения требует, чтобы бит 0 был вставлен, даже если этот бит будет последним, перед сигналом EOP (конец пакета).

Рис.7.7. Временная диаграмма этапов кодирования данных

Рассмотрим некоторые электрические требования шины USB. На рис.7.8 представлена схема симметричного шинного формирователя (драйвера) USB, содержащего два одинаковых буфера, выполненных по технологии КМОП.

Рис.7.8. Схема дифференциального формирователя

Симметричный дифференциальный формирователь содержит два разно-полярных выхода D+ и D-, имеющих три состояния, чтобы реализовать двунаправленную полудуплексную работу. Один из выходов представляет буферизованный повторитель входа, а другой является его дополнением. Эти выходы соединяются парой скрещенных проводов со входами дифференциального приемника. Таким образом, по проводам передаются два сигнала, которые подвергаются в одинаковой мере воздействию синфазных помех, устраняемых дифференциальным приемником.

Так как выходы формирователя имеют разные полярности, то при передаче данных с высокой частотой возникают отраженные разнополярные сигналы, которые не являются синфазными помехами. Поэтому следует устранить возможность возникновения отраженных сигналов на приемной стороне интерфейса.

Применение дифференциального принципа передачи повышает ее помехоустойчивость и, как следствие, позволяет увеличить скорость передачи данных.

На рис.7.9 показана диаграмма сигналов на выходах формирователя для скорости передачи 12 Мбит/с (а) и 1.5 Мбит/с (б).

Рис.7.9. Диаграммы сигналов на выходах формирователей для скоростей передачи данных 12 Мбит/с (а) и 1.5 Мбит/с (б)

При скорости передачи данных 12 Мбит/с используется витая пара экранированного кабеля, а для скорости 1.5 Мбит/с – неэкранированный кабель с нескрученной парой проводников. Сопряжение приемопередатчиков (ПП) с помощью кабеля USB в случае высокоскоростной (а) и низкоскоростной (б) передач изображено на рис.7.10.

Из схем видно, что высокоскоростные устройства содержат резистор нагрузки (R Н) на линии D+, а низкоскоростные – на линии D-, что позволяет определить тип подключенного устройства USB. Когда устройство USB не управляет линиями D+ и D-, то на линии с R Н имеется напряжение около 3В, а на другой – близкое к 0В. Такое состояние шины называется пассивным состоянием.

Рис.7.10. Схемы сопряжения ПП хоста (хаба) и функционера (хаба) для высокоскоростной (а) и низкоскоростной (б) передач

Если устройство не подключено к нижнему порту хоста (хаба) (или отсутствует питание), то на обоих линиях D+ и D- устанавливается асимметричный низкий уровень напряжения (0,6В), который используется для определения условия рассоединения или сообщения о конце пакета (EOP). Для высокоскоростных передач условием рассоединения является наличие асимметричного нуля в течение 2,5 мс (30 единиц времени передачи бита).

Считается, что связь с устройством установлена, если напряжение на одной из линий D+ (D-) достигает выше асимметричного высокого порога в 1,5В за время 2,5 мс.

Определение факта рассоединения и связанности устройства USB показано на рис.7.11.

Рис.7.11. Установление факта рассоединения (а) и связи устройства USB (б)

Общее время передачи данных оценивается числом битов данных, умноженным на период (Т), определяемый скоростью передачи данных. На рис.7.12 представлена временная диаграмма передачи данных по дифференциальным линиям данных D+ и D-.

Рис.7.12. Временная диаграмма передачи данных

В соответствии с кодом NRZI бит 0 вызывает переключение уровней напряжения, а бит 1 сохраняет соответствующие уровни напряжения на линиях D+ и D-. Длительность асимметричного нуля в EOP равна 2Т без учета времени задержки.

Начало пакета (SOF) определяется первым битом поля синхронизации, когда пассивное состояние линий D+ и D- переходит в активное. Устройства USB поддерживают режим приостановки, который вызывается тем, что пассивное состояние линий D+ и D- удерживается более 3 мс.

Командой хоста может быть установлен сигнал сброса, который распространяется через все хабы и приводит подключенные устройства в начальное состояние. Сигналом сброса является асимметричный нуль, удерживаемый на шине в течение 10 мс.

В зависимости от источника потребления питания различают следующие типы устройств:

Хабы, получающие питание от шины и обеспечивающие питанием внутренние функциональные устройства и низшие порты;

Хабы с автономным питанием, которые позволяют снабдить питанием пять модулей, каждый из которых потребляет 100 мА, составляющие нагрузку модуля;

Маломощные (с нагрузкой одного модуля) и высокомощные (с нагрузкой пяти модулей) устройства, потребляющие питание из шины;

Функциональные устройства, имеющие внешний источник питания и обладающие нагрузкой одного модуля, питаемого из шины.

Рассмотрим форматы пакетов, определяемых стандартом шины USB. Различают опознавательные, информационные пакеты и пакеты квитирования. Каждому пакету предшествует передача 8-битного поля синхронизации. Формат опознавательного пакета изображен на рис. 7.13.

Рис.7.13. Формат опознавательного пакета

Вслед за полем синхронизации для каждого пакета передается 8-битный идентификатор (ИД) младшим битом вперед. Биты D0-D3 поля ИД задают тип пакета (формат и способ обнаружения ошибок соответствующего пакета), а биты D4-D7 являются инверсными значениями младших четырех битов и служат в качестве поля проверки правильности передачи поля ИД, которые делятся на опознавательные, информационные, квитирования и специальные.

Для выбора устройства и конечной точки (КТ) в нем используется 7-битный адрес устройства и 4-битный номер КТ. Поле адреса предназначено для ввода (вывода) данных и установочных опознавателей. При сбросе или отключении питания адрес устройства принимает значение 0 и затем программируется хостом. Низкоскоростные устройства содержат до двух точек, а высокоскоростные – до 16 конечных точек. Поле адреса и номера КТ защищены 5-битовым контрольным циклическим кодом (КЦК). Циклический избыточный контроль состоит в том, что биты поля КЦК представляют собой коэффициенты двоичного полинома (5-битовый эквивалент), а байты контроля ошибок получаются путем деления этого полинома на заданный 16-битный полином. По двоичному коду остатка определяют наличие или отсутствие ошибки.

Пакет поля данных состоит из 8-битного поля ИД, поля данных (0-1023 байтов) и 16-битного поля КЦК (рис.7.14).

Рис.7.14. Формат пакета данных

Существует два пакета данных (Данные(0) и Данные(1)) с различными идентификаторами, необходимые для поддержания соответствующей синхронизации. Данные в пакете представлены в виде последовательности байтов.

Пакет квитирования содержит только поле ИД и предназначен для проверки успешности передачи данных. Различают три типа этого пакета: ACK (подтверждение) – пакет данных получен без ошибок и пакет ИД верен (пакет применяется при передаче данных); NAK (неподтверждение) – пакет, показывающий на невозможность устройством принять данные от хоста (временный отказ) или устройство не имеет данных для передачи хосту (кроме того, пакет используется для сообщения о временной паузе в передаче или приеме данных устройством); STALL – ответный пакет, говорящий о постоянном отказе и необходимости вмешательства программы хоста.

Опознавательный пакет SOF (начало фрейма) позволяет хабам или устройствам идентифицировать начало фрейма и синхронизировать их внутренние таймеры с таймером главной ЭВМ. Формат опознавательного пакета показан на рис.7.15.

Рис.7.15. Формат опознавательного пакета

Фрейм состоит из ряда транзакций (действий на шине), имеющих начало от одного SOF-маркера, и продолжается до начала следующего SOF-маркера. Устройство или хаб определяют начало фрейма по 8-битному ИД SOF-пакета.

Существуют следующие транзакции: массива данных, управления, прерывания и изохронного типа.

Транзакция массива данных при вводе данных в хост состоит из опознавательного пакета с запросом ввода, пакета данных (Данные (0/1)) из устройства и пакета квитирования (NAK или STALL), посылаемого устройством вслед за данными. Если пакет данных принят верным, то хост отвечает устройству пакетом ACK.

При вводе данных из хоста в устройство хост направляет опознавательный пакет с запросом вывода, а затем пакет данных. Устройство отвечает хосту одним из трех пакетов квитирования (ACK, NAK или STALL).

Последовательность действий хоста и устройства при передачи массивов данных показана на рис.7.16.

Рис.7.16. Последовательность действий хоста и устройства

На рис.7.17 представлена последовательность идентификаторов при записи и чтении массива данных.

Рис.7.17. Последовательность идентификаторов при записи и чтении массива данных

С целью синхронизации компонентов шины USB выполняется чередование пакетов с идентификатором Данные(0) и пакетов с идентификатором Данные(1). Переключение пакетов данных в передатчике выполняется после получения пакета квитирования ACK, а в приемнике – после получения очередного пакета.

Переходы управления содержат две стадии: Установка и Состояние, между которыми может присутствовать информационная стадия. Во время стадии Установки выполняется передача данных только с форматом поля ИД Данные(0) к конечной точке управления устройства.

Транзакция Установки изображена на рис.7.18.

Рис.7.18. Транзакция Установки

Сигнал квитирования ACK не выдается, если данные являются неверными. При наличии стадии данных выполняется их передача в одном направлении в соответствии с требованиями протокола. Эта стадия может состоять из нескольких транзакций ввода и вывода и размер массива данных задается в пакете Установка.

Стадия Состояния является последней в рассматриваемой последовательности и использует идентификатор Данные 0.

На рис.7.19 показана очередность транзакций и идентификаторов данных для управления чтением или записью.

Рис.7.19. Очередность транзакций и ИД данных

В стадии Состояние от устройства к хосту передается следующая информация: устройство выполнило задачу (ACK), устройство не содержит ошибок (STALL) и устройство занято (NACK).

Транзакции прерываний содержат опознаватели ввода. На рис.7.20 изображены последовательности транзакций прерываний.

Рис.7.20. Последовательности транзакций прерываний

Если устройство получает опознаватель ввода, то оно выдает данные по прерыванию в виде пакета и получает ACK или передает NACK/STALL. Пакет квитирования NAK направляется устройством, когда оно не содержит информации для нового прерывания, а пакет квитирования STALL – устройством, если оно временно приостановило работу.

Изохронные транзакции не имеют стадии квитирования. На рис.7.21 представлены стадии изохронных транзакций.

Рис.7.21. Стадии изохронных транзакций

При выполнении изохронного режима меняется поочередно пакеты данных с соответствующими идентификаторами, т.е. сначала следует пакет данных Данные(0), а за ним – пакет Данные(1) и т.д.

Предыдущая

Первая спецификация (версия 1.0) USB была опубликована в начале 1996 года, а осенью 1998 года появилась спецификация 1.1, исправляющая проблемы, обнаруженные в первой редакции. Весной 2000 года была опубликована версия 2.0, в которой предусматривалось 40-кратное повышение пропускной способности шины. Так, спецификация 1.0 и 1.1 обеспечивает работу на скоростях 12 Мбит/с и 1,5 Мбит/с, а спецификация 2.0 - на скорости 480 Мбит/с. При этом предусматривается обратная совместимость USB 2.0 с USB 1.х.

Окончательная спецификация USB 3.0 появилась в 2008 году. Созданием USB 3.0 занимались компании Intel , Microsoft , Hewlett-Packard , Texas Instruments , NEC и. NXP Semiconductors В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта физически и функционально совместимы с USB 2.0. В дополнение к четырем линиям USB 2.0 в USB 3.0 добавляется еще четыре линии связи (две витых пары). Новые контакты в разъемах USB 3.0 расположены отдельно от старых на другом контактном ряду. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 4,8 Гбит/с, таким образом, скорость передачи возрастает с 60 Мбайт/с до 600 Мбайт/с и позволяет передать 1 Тб не за 8-10 часов, а за 40 минут-1 час. Версия 3.0 так же может похвастаться увеличенной силой тока с 500 мА до 900 мА, поэтому пользователь может не только подпитывать от одного хаба большее количество устройств, но и сами устройства во многих случаях смогут избавиться от отдельных блоков питания.

Общая архитектура USB

Физическая архитектура USB определяется следующими правилами:

  • устройства подключаются к хосту;
  • физическое соединение устройств между собой осуществляется по топологии многоярусной звезды, вершиной которой является корневой хаб;
  • центром каждой звезды является хаб;
  • каждый кабельный сегмент соединяет между собой две точки: хост с хабом или функцией, хаб с функцией или другим хабом;
  • к каждому порту хаба может подключаться периферийное USB-устройство или другой хаб, при этом допускаются до 5 уровней каскадирования хабов, не считая корневого.

Самым верхним уровнем является корневой концентратор, который обычно совмещается с USB контроллером.

К корневому концентратору могут быть подключены либо устройства, либо еще концентраторы, для увеличения числа доступных портов. Концентратор может быть выполнен в виде отдельного устройства, либо быть встроенным в какое-то другое, т.е. устройства, подключаемые к USB, можно подразделить на функциональные устройства, т.е. те, которые выполняют какую-то конкретную функцию (например, мыши), устройства-концентратор, выполняющие только функцию только разветвления, и совмещенные устройства, имеющие в своем составе концентратор, расширяющие набор портов (например, мониторы, с портами для подключения других).


На пятом уровне комбинированное устройство использоваться не может. Кроме того отдельно стоит упомянуть о хосте, являющемся скорее программно-аппаратным комплексом, нежели просто устройством.


Детали физической архитектуры скрыты от прикладных программ в системном программном обеспечении (ПО), поэтому логическая архитектура выглядит как обычная звезда, центром которой является прикладное ПО, а вершинами - набор конечных точек. Прикладная программа ведет обмен информацией с каждой конечной точкой.

Составляющие USB

Шина USB состоит из следующих элементов:


Свойства USB-устройств

  • адресация - устройство должно отзываться на назначенный ему уникальный адрес и только на него;
  • конфигурирование - после включения или сброса устройство должно предоставлять нулевой адрес для возможности конфигурирования его портов;
  • передача данных - устройство имеет набор конечных точек для обмена данными с хостом. Для конечных точек, допускающих разные типы передач, после конфигурирования доступен только один из них;
  • управление энергопотреблением - любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. При конфигурировании устройство заявляет свои потребности тока, но не более 500 мА. Если хаб не может обеспечить устройству заявленный ток, устройство не будет использоваться;
  • приостановка - USB-устройство должно поддерживать приостановку (suspended mode), при которой его потребляемый ток не превышает 500 мкА. USB-устройство должно автоматически приостанавливаться при прекращении активности шины;
  • удаленное пробуждение - возможность удаленного пробуждения (remote wakeup) позволяет приостановленному USB-устройству подать сигнал хосту, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации USB-устройства. При конфигурировании эта функция может быть запрещена.

Логические уровни обмена данными

Спецификация USB определяет три логических уровня с определенными правилами взаимодействия. USB-устройство содержит интерфейсную, логическую и функциональную части. Хост тоже делится на три части - интерфейсную, системную и ПО. Каждая часть отвечает только за определенный круг задач.

Таким образом, операция обмена данными между прикладной программой и шиной USB выполняется путем передачи буферов памяти через следующие уровни:

  • уровень клиентского ПО в хосте:
    • обычно представляется драйвером USB-устройства;
    • обеспечивает взаимодействие пользователя с операционной системой с одной стороны и системным драйвером с другой;
  • уровень системного драйвера USB в хосте(USB, Universal Serial Bus Driver):
    • управляет нумерацией устройств на шине;
    • управляет распределением пропускной способности шины и мощности питания;
    • обрабатывает запросы пользовательских драйверов;
  • уровень хост-контроллера интерфейса шины USB (HCD, Host Controller Driver):
    • преобразует запросы ввода/вывода в структуры данных, по которым выполняются физические транзакции;
    • работает с регистрами хоста.

Отношения клиентского программного обеспечения и USB устройств: USB предоставляет для взаимодействия программный интерфейс и только его, позволяя клиентскому ПО существовать в отрыве от конкретного подключенного к шине устройства и его конфигурации. Для клиентской программы USB - это лишь набор функций.

Взаимодействие компонентов USB представлено на схеме ниже:

В рассматриваемую структуру входят следующие элементы:

Физическое устройство USB — устройство на шине, выполняющее функции, интересующие конечного пользователя.

Client SW — ПО, соответствующее конкретному устройству, исполняемое на хост-компьютере. Может являться составной частью ОС или специальным продуктом.

USB System SW — системная поддержка USB, независимая от конкретных устройств и клиентского ПО.

USB Host Controller — аппаратные и программные средства для подключения устройств USB к хост-компьютеру.

Принципы передачи данных

Механизм передачи данных является асинхронным и блочным. Блок передаваемых данных называется USB-фреймом или USB-кадром и передается за фиксированный временной интервал. Оперирование командами и блоками данных реализуется при помощи логической абстракции, называемой каналом. Канал является логической связкой между хостом и конечной точкой внешнего устройства.

Для передачи команд (и данных, входящих в состав команд) используется канал по умолчанию, а для передачи данных открываются либо потоковые каналы, либо каналы сообщений.

Поток доставляет данные от одного конца канала к другому, он всегда однонаправленный. Один и тот же номер конечной точки может использоваться для двух поточных каналов — ввода и вывода. Поток может реализовывать следующие типы обмена: сплошной, изохронный и прерывания. Доставка всегда идет в порядке «первым вошел — первым вышел» (FIFO); с точки зрения USB, данные потока неструктурированны. Сообщения имеют формат, определенный спецификацией USB. Хост посылает запрос к конечной точке, после которого передается (принимается) пакет сообщения, за которым следует пакет с информацией состояния конечной точки. Последующее сообщение нормально не может быть послано до обработки предыдущего, но при отработке ошибок возможен сброс необслуженных сообщений. Двухсторонний обмен сообщениями адресуется к одной и той же конечной точке. Для доставки сообщений используется только обмен типа «управление».

С каналами связаны характеристики, соответствующие конечной точке. Каналы организуются при конфигурировании устройств USB. Для каждого включенного устройства существует канал сообщений (Control Pipe 0), по которому передается информация конфигурирования, управления и состояния.

Любой обмен по шине USB инициируется хост-контроллером. Он организует обмены с устройствами согласно своему плану распределения ресурсов.

Контроллер циклически (с периодом 1,0 ± 0,0005 мс) формирует кадры (frames), в которые укладываются все запланированные передачи.

Каждый кадр начинается с посылки пакета-маркера SOF (Start Of Frame, начало кадра), который является синхронизирующим сигналом для всех устройств, включая хабы. В конце каждого кадра выделяется интервал времени EOF (End Of Frame, конец кадра), на время которого хабы запрещают передачу по направлению к контроллеру. Если хаб обнаружит, что с какого-то порта в это время ведется передача данных, этот порт отключается.

В режиме высокоскоростной передачи пакеты SOF передаются в начале каждого микрокадра (период 125 ± 0,0625 мкс).

Хост планирует загрузку кадров так, чтобы в них всегда находилось место для наиболее приоритетных передач, а свободное место кадров заполняется низкоприоритетными передачами больших объемов данных. Спецификация USB позволяет занимать под периодические транзакции (изохронные и прерывания) до 90% пропускной способности шины.

Каждый кадр имеет свой номер. Хост-контроллер оперирует 32-битным счетчиком, но в маркере SOF передает только младшие 11 бит. Номер кадра циклически увеличивается во время EOF.

Для изохронной передачи важна синхронизация устройств и контроллера. Есть три варианта синхронизации:

  • синхронизация внутреннего генератора устройства с маркерами SOF;
  • подстройка частоты кадров под частоту устройства;
  • согласование скорости передачи (приема) устройства с частотой кадров.

В каждом кадре может быть выполнено несколько транзакций, их допустимое число зависит от скорости, длины поля данных каждой из них, а также от задержек, вносимых кабелями, хабами и устройствами. Все транзакции кадров должны быть завершены до момента времени EOF. Частота генерации кадров может немного варьироваться с помощью специального регистра хост-контроллера, что позволяет подстраивать частоту для изохронных передач. Подстройка частоты кадров контроллера возможна под частоту внутренней синхронизации только одного устройства.

Информация по каналу передается в виде пакетов (Packet). Каждый пакет начинается с поля синхронизации SYNC (SYNChronization), за которым следует идентификатор пакета PID (Packet IDentifier). Поле Check представляет собой побитовую инверсию PID.

Структура данных пакета зависит от группы, к которой он относится.

1. Клиентское ПО посылает IPR-запросы уровню USBD.

2. Драйвер USBD разбивает запросы на транзакции по следующим правилам:

  • выполнение запроса считается законченным, когда успешно завершены все транзакции, его составляющие;
  • все подробности отработки транзакций (такие как ожидание готовности, повтор транзакции при ошибке, неготовность приемника и т. д.) до клиентского ПО не доводятся;
  • ПО может только запустить запрос и ожидать или выполнения запроса или выхода по тайм-ауту;
  • устройство может сигнализировать о серьезных ошибках, что приводит к аварийному завершению запроса, о чем уведомляется источник запроса.

3. Драйвер контроллера хоста принимает от системного драйвера шины перечень транзакций и выполняет следующие действия:

  • планирует исполнение полученных транзакций, добавляя их к списку транзакций;
  • извлекает из списка очередную транзакцию и передает ее уровню хост-контроллера интерфейса шины USB;

4. Хост-контроллер интерфейса шины USB формирует кадры;

5. Кадры передаются последовательной передачей бит по методу NRZI

Таким образом, можно сформировать следующую упрощенную схему:

1. каждый кадр состоит из наиболее приоритетных посылок, состав которых формирует драйвер хоста;

2. каждая передача состоит из одной или нескольких транзакций;

3. каждая транзакция состоит из пакетов;

4. каждый пакет состоит из идентификатора пакета, данных (если они есть) и контрольной суммы.

Типы сообщений в USB

Спецификация шины определяет четыре различных типа передачи (transfer type) данных для конечных точек:

  • управляющие передачи (Control Transfers ) — используются хостом для конфигурирования устройства во время подключения, для управления устройством и получения статусной информации в процессе работы. Протокол обеспечивает гарантированную доставку таких посылок. Длина поля данных управляющей посылки не может превышать 64 байт на полной скорости и 8 байт на низкой. Для таких посылок хост гарантированно выделяет 10% полосы пропускания;
  • передачи массивов данных (Bulk Data Transfers ) — применяются при необходимости обеспечения гарантированной доставки данных от хоста к функции или от функции к хосту, но время доставки не ограничено. Такая передача занимает всю доступную полосу пропускания шины. Пакеты имеют поле данных размером 8, 16, 32 или 64 байт. Приоритет у таких передач самый низкий, они могут приостанавливаться при большой загрузке шины. Допускаются только на полной скорости передачи. Такие посылки используются, например, принтерами или сканерами;
  • передачи по прерываниям (Interrupt Transfers ) — используются в том случае, когда требуется передавать одиночные пакеты данных небольшого размера. Каждый пакет требуется передать за ограниченное время. Операции передачи носят спонтанный характер и должны обслуживаться не медленнее, чем того требует устройство. Поле данных может содержать до 64 байт на полной скорости и до 8 байт на низкой. Предел времени обслуживания устанавливается в диапазоне 1—255 мс для полной скорости и 10—255 мс — для низкой. Такие передачи используются в устройствах ввода, таких как мышь и клавиатура;
  • изохронные передачи (Isochronous Transfers ) — применяются для обмена данными в "реальном времени", когда на каждом временном интервале требуется передавать строго определенное количество данных, но доставка информации не гарантирована (передача данных ведется без повторения при сбоях, допускается потеря пакетов). Такие передачи занимают предварительно согласованную часть пропускной способности шины и имеют заданную задержку доставки. Изохронные передачи обычно используются в мультимедийных устройствах для передачи аудио- и видеоданных, например, цифровая передача голоса. Изохронные передачи разделяются по способу синхронизации конечных точек — источников или получателей данных — с системой: различают асинхронный, синхронный и адаптивный классы устройств, каждому из которых соответствует свой тип канала USB.

Механизм прерываний

Для шины USB настоящего механизма прерываний не существует. Вместо этого хост опрашивает подключенные устройства на предмет наличия данных о прерывании. Опрос происходит в фиксированные интервалы времени, обычно каждые 1 - 32 мс. Устройству разрешается посылать до 64 байт данных.

С точки зрения драйвера, возможности работы с прерываниями фактически определяются хостом, который и обеспечивает поддержку физической реализации USB-интерфейса.

Режимы передачи данных

Шина USB имеет три режима передачи данных:

  • низкоскоростной (LS, Low-speed) 1.5 Мбит/с;
  • полноскоростной (LF, Full-speed) 12 Мбит/с;
  • высокоскоростной (HS, High-speed, только для USB 2.0) 480 Мбит/с.

Подключение периферийных устройств к шине USB

Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода — для питания периферийного устройства.

Спецификация 1.0 регламентировала два типа разъёмов:


Впоследствии были разработаны миниатюрные разъёмы для применения USB в переносных и мобильных устройствах, получившие название Mini-USB.

Существуют также разъёмы типа Mini AB и Micro AB, с которыми соединяются соответствующие коннекторы как типа A, так и типа B.

Так же существуют миниатюрные разъёмы - Micro USB.

Тип USB 2.0 Значение контактов Цвет провода

Подключение полноскоростного устройства

Подключение низкоскоростного устройства

Сигналы синхронизации кодируются вместе с данными по методу NRZI (Non Return to Zero Invert). Каждому пакету предшествует поле синхронизации SYNC, позволяющее приемнику настроиться на частоту передатчика.

Кабель также имеет линии VBus и GND для передачи питающего напряжения 5 В к устройствам. Сечение проводников выбирается в соответствии с длиной сегмента для обеспечения гарантированного уровня сигнала и питающего напряжения.

· Лекция 14. Универсальная последовательная шина USB.

Толковый словарь по вычислительным системам определяет понятие интерфейс (interface) как границу раздела двух систем, устройств или программ; элементы соединения и вспомогательные схемы управления, используемые для соединения устройств. Мы же поговорим о интерфейсах, позволяющих подключать к персональным (и не только) компьютерам разнообразные периферийные устройства и их контроллеры. По способу передачи информации интерфейсы подразделяются на параллельные и последовательные. В параллельном интерфейсе все биты передаваемого слова (обычно байта) выставляются и передаются по соответствующим параллельно идущим проводам одновременно. В PC традиционно используется параллельный интерфейс Centronics, реализуемый LPT-портами. В последовательном же интерфейсе биты передаются друг за другом, обычно по одной линии. СОМ порты PC обеспечивают последовательный интерфейс в соответствии со стандартом RS-232C. При рассмотрении интерфейсов важным параметром является пропускная способность.

В архитектуре современных компьютеров все большее значение приобретают внешние шины, служащие для подключения различных устройств. Сегодня это могут быть, например, внешние жесткие диски, CD-, DVD-устройства, сканеры, принтеры, цифровые камеры и прочее.

Широко используемый последовательный интерфейс синхронной и асинхронной передачи данных.

2.Шина USB.Общая характеристика.

USB (Universal Serial Bus - универсальная последовательная шина) является промышленным стандартом расширения архитектуры PC, ориентированным на интеграцию с телефонией и устройствами бытовой электроники. Версия 1.0 была опубликована в январе 1996 года. Архитектура USB определяется следующими критериями:

Ø Легко реализуемое расширение периферии PC.

Ø Дешевое решение, поддерживающее скорость передачи до 12 M бит/с.

Ø Полная поддержка в реальном времени передачи аудио и (сжатых) видеоданных.

Ø Гибкость протокола смешанной передачи изохронных данных и асинхронных сообщений.

Ø Интеграция с выпускаемыми устройствами.

Ø Доступность в PC всех конфигураций и размеров.

Ø Обеспечение стандартного интерфейса, способного быстро завоевать рынок.

Ø Создание новых классов устройств, расширяющих PC.

Ø С точки зрения конечного пользователя, привлекательны следующие черты USB:

Ø Простота кабельной системы и подключений.

Ø Скрытие подробностей электрического подключения от конечного пользователя.

Ø Самоидентифицирующиеся ПУ, автоматическая связь устройств с драйверами и конфигурирование.

Ø Возможность динамического подключения и конфигурирования ПУ.

С середины 1996 года выпускаются PC со встроенным контроллером USB, реализуемым чипсетом. Уже появились модемы, клавиатуры, сканеры, динамики и другие устройства ввода/вывода с поддержкой USB, а также мониторов с USB-адаптерами - они играют роль концентраторов для подключения других устройств.

Структура USB

USB обеспечивает одновременный обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Распределение пропускной способности шины между ПУ планируется хостом и реализуется им с помощью посылки маркеров. Шина позволяет подключать, конфигурировать, использовать и отключать устройства во время работы хоста и самих устройств.

Ниже приводится авторский вариант перевода терминов из спецификации "Universal Serial Bus Specification", опубликованной Compaq , DEC , IBM , Intel , Microsoft , NEC и Northern Telecom . Более подробную и оперативную информацию можно найти по адресу:

Устройства (Device) USB могут являться хабами, функциями или их комбинацией. Хаб (Hub) обеспечивает дополнительные точки подключения устройств к шине. Функции (Function) USB предоставляют системе дополнительные возможности, например подключение к ISDN, цифровой джойстик, акустические колонки с цифровым интерфейсом и т. п. Устройство USB должно иметь интерфейс USB, обеспечивающий полную поддержку протокола USB, выполнение стандартных операций (конфигурирование и сброс) и предоставление информации, описывающей устройство. Многие устройства, подключаемые к USB, имеют в своем составе и хаб, и функции. Работой всей системы USB управляет хост-контроллер (Host Controller), являющийся программно-аппаратной подсистемой хост-компьютера.

Физическое соединение устройств осуществляется по топологии многоярусной звезды. Центром каждой звезды является хаб, каждый кабельный сегмент соединяет две точки - хаб с другим хабом или с функцией. В системе имеется один (и только один) хост-контроллер, расположенный в вершине пирамиды устройств и хабов. Хост-контроллер интегрируется с корневым хабом (Root Hub), обеспечивающим одну или несколько точек подключения - портов. Контроллер U SB, входящий в состав чипсетов, обычно имеет встроенный двухпортовый хаб. Логически устройство, подключенное к любому хабу USB и сконфигурированное (см. ниже), может рассматриваться как непосредственно подключенное к хост-контроллеру.

Функции представляют собой устройства, способные передавать или принимать данные или управляющую информацию по шине. Типично функции представляют собой отдельные ПУ с кабелем, подключаемым к порту хаба. Физически в одном корпусе может быть несколько функций со встроенным хабом, обеспечивающим их подключение к одному порту. Эти комбинированные устройства для хоста являются хабами с постоянно подключенными устройствами-функциями.

Каждая функция предоставляет конфигурационную информацию, описывающую возможности ПУ и требования к ресурсам. Перед использованием функция должна быть сконфигурирована хостом - ей должна быть выделена полоса в канале и выбраны опции конфигурации.

Примерами функций являются:

Ø Указатели - мышь, планшет, световое перо.

Ø Устройства ввода - клавиатура или сканер.

Ø Устройство вывода - принтер, звуковые колонки (цифровые).

Ø Телефонный адаптер ISDN.

Хаб - ключевой элемент системы РпР в архитектуре USB. Хаб является кабельным концентратором. Точки подключения называются портами хаба. Каждый хаб преобразует одну точку подключения в их множество. Архитектура допускает соединение нескольких хабов.

У каждого хаба имеется один восходящий порт (Upstream Port), предназначенный для подключения к хосту или хабу верхнего уровня. Остальные порты являются нисходящими (Downstream Ports), предназначенными для подключения функций или хабов нижнего уровня. Хаб может распознать подключение устройств к портам или отключение от них и управлять подачей питания на их сегменты. Каждый из портов может быть разрешен или запрещен и сконфигурирован на полную или ограниченную скорость обмена. Хаб обеспечивает изоляцию сегментов с низкой скоростью от высокоскоростных.

Хабы могут управлять подачей питания на нисходящие порты; предусматривается установка ограничения на ток, потребляемый каждым портом.

Система USB разделяется на три уровня с определенными правилами взаимодействия. Устройство USB содержит интерфейсную часть, часть устройства и функциональную часть. Хост тоже делится на три части - интерфейсную, системную и ПО устройства. Каждая часть отвечает только за определенный круг задач, логическое и реальное взаимодействие между ними иллюстрирует рис. 7.1.

В рассматриваемую структуру входят следующие элементы:

Ø Физическое устройство USB - устройство на шине, выполняющее функции, интересующие конечного пользователя.

Ø Client SW - ПО, соответствующее конкретному устройству, исполняемое на хост-компьютере. Может являться составной частью ОС или специальным продуктом.

Ø USB System SW - системная поддержка USB, независимая от конкретных устройств и клиентского ПО.

Ø USB Host Controller - аппаратные и программные средства для подключения устройств USB к хост-компьютеру.

3.Физический интерфейс

Стандарт USB определяет электрические и механические спецификации шины. Информационные сигналы и питающее напряжение 5 В передаются по четырехпроводному кабелю. Используется дифференциальный способ передачи сигналов D+ и D- по двум проводам. Уровни сигналов передатчиков в статическом режиме должны быть ниже 0,3 В (низкий уровень) или выше 2,8 В (высокий уровень). Приемники выдерживают входное напряжение в пределах - 0,5...+3,8 В. Передатчики должны уметь переходить в высокоимпедансное состояние для двунаправленной полудуплексной передачи по одной паре проводов.

Передача по двум проводам в USB не ограничивается дифференциальными сигналами. Кроме дифференциального приемника каждое устройство имеет линейные приемники сигналов D+ и D-, а передатчики этих линий управляются индивидуально. Это позволяет различать более двух состояний линии, используемых для организации аппаратного интерфейса. Состояния Diff0 и Diff1 определяются по разности потенциалов на линиях D+ и D- более 200 мВ при условии, что на одной из них потенциал выше порога срабатывания VSE. Состояние, при котором на обоих входах D+ и D- присутствует низкий уровень, называется линейным нулем (SEO - Single-Ended Zero). Интерфейс определяет следующие состояния:

Ø Data J State и Data К State - состояния передаваемого бита (или просто J и К), определяются через состояния Diff0 и Diff1.

Ø Idle State - пауза на шине.

Ø Resume State - сигнал "пробуждения" для вывода устройства из "спящего" режима.

Ø Start of Packet (SOP) - начало пакета (переход из Idle State в К).

Ø End of Packet (EOP) - конец пакета .

Ø Disconnect - устройство отключено от порта.

Ø Connect - устройство подключено к порту.

Ø Reset - сброс устройства.

Состояния определяются сочетаниями дифференциальных и линейных сигналов; для полной и низкой скоростей состояния DiffO и Diff1 имеют противоположное назначение.
В декодировании состояний Disconnect, Connect и Reset учитывается время нахождения линий (более 2,5 мс) в определенных состояниях.

Шина имеет два режима передачи. Полная скорость передачи сигналов USB составляет 12 Мбит/с, низкая - 1,5 Мбит/с. Для полной скорости используется экранированная витая пара с импедансом 90 Ом и длиной сегмента до 5 м, для низкой - невитой неэкранированньгй кабель до 3 м. Низкоскоростные кабели и устройства дешевле высокоскоростных. Одна и та же система может одновременно использовать оба режима; переключение для устройств осуществляется прозрачно.

Низкая скорость предназначена для работы с небольшим количеством ПУ, не требующих высокой скорости. Скорость, используемая устройством, подключенным к конкретному порту, определяется хабом по уровням сигналов

на линиях D+ и D-, смещаемых нагрузочными резисторами R2 приемопередатчиков (см. рис. 7.2 и 7.3)

Сигналы синхронизации кодируются вместе с данными по методу NRZI (Non Return to Zero Invert), его работу иллюстрирует рис. 7.4. Каждому пакету предшествует поле синхронизации SYNC, позволяющее приемнику настроиться на частоту передатчика. Кабель также имеет линии VBus и GND для передачи питающего напряжения 5 В к устройствам.

Сечение проводников выбирается в соответствии с длиной сегмента для обеспечения гарантированного уровня сигнала и питающего напряжения. Стандарт определяет два типа разъемов (см. табл. 7.1 и рис. 7.5).

Разъемы типа "А" применяются для подключения к хабам (Upstream Connector). Вилки устанавливаются на кабелях, не отсоединяемых от устройств (например, клавиатура, мышь и т. п.). Гнезда устанавливаются на нисходящих портах (Downstream Port) хабов. Разъемы типа "В" (Downstream Connector) устанавливаются на устройствах, от которых соединительный кабель может отсоединяться (принтеры и сканеры). Ответная часть (вилка) устанавливается на соединительном кабеле, противоположный конец которого имеет вилку типа "А".

Разъемы типов "А" и "В" различаются механически (рис. 7.5), что исключает недопустимые петлевые соединения портов хабов. Четырехконтактные разъемы имеют ключи, исключающие неправильное присоединение. Конструкция разъемов обеспечивает позднее соединение и раннее отсоединение сигнальных цепей по сравнению с питающими. Для распознавания разъема USB на корпусе устройства ставится стандартное символическое обозначение.

Рис. 7.5. Гнезда USB: а - типа "А", б - типа "В", в - символическое обозначение

Питание устройств USB возможно от кабеля (Bus-Powered Devices) или от собственного блока питания (Self-Powered Devices). Хост обеспечивает питанием непосредственно подключенные к нему ПУ. Каждый хаб, в свою очередь, обеспечивает питание устройств, подключенных к его нисходящим портам. При некоторых ограничениях топологии допускается применение хабов, питающихся от шины. На рис. 7.6 приведен пример схемы соединения устройств USB.

Здесь клавиатура, перо и мышь могут питаться от шины.

USB поддерживает как однонаправленные, так и двунаправленные режимы связи. Передача данных производится между ПО хоста и конечной точкой устройства. Устройство может иметь несколько конечных точек, связь с каждой из них (канал) устанавливается независимо.

Архитектура USB допускает четыре базовых типа передачи данных:

Ø Управляющие посылки (Control Transfers), используемые для конфигурирования во время подключения и в процессе работы для управления устройствами. Протокол обеспечивает гарантированную доставку данных. Длина поля данных управляющей посылки не превышает 64 байт на полной скорости и 8 байт на низкой.

Ø Сплошные передачи (Bulk Data Transfers) сравнительно больших пакетов без жестких требований ко времени доставки. Передачи занимают всю свободную полосу пропускания шины. Пакеты имеют поле данных размером 8, 16, 32 или 64 байт. Приоритет этих передач самый низкий, они могут приостанавливаться при большой загрузке шины. Допускаются только на полной скорости передачи.

Ø Прерывания (Interrupt) - короткие (до 64 байт на полной скорости, до 8 байт на низкой) передачи типа вводимых символов или координат. Прерывания имеют спонтанный характер и должны обслуживаться не медленнее, чем того требует устройство. Предел времени обслуживания устанавливается в диапазоне 1-255 мс для полной скорости и 10-255 мс - для низкой.

Ø Изохронные передачи (Isochronous Transfers) - непрерывные передачи в реальном времени, занимающие предварительно согласованную часть пропускной способности шины и имеющие заданную задержку доставки. В случае обнаружения ошибки изохронные данные передаются без повтора - недействительные пакеты игнорируются. Пример - цифровая передача голоса. Пропускная способность определяется требованиями к качеству передачи, а задержка доставки может быть критичной, например, при реализации телеконференций.

Полоса пропускания шины делится между всеми установленными каналами. Выделенная полоса закрепляется за каналом, и если установление нового канала требует такой полосы, которая не вписывается в уже существующее распределение, запрос на выделение канала отвергается.

Архитектура USВ предусматривает внутреннюю буферизацию всех устройств, причем чем большей полосы пропускания требует устройство, тем больше должен быть его буфер. USB должна обеспечивать обмен с такой скоростью, чтобы задержка данных в устройстве, вызванная буферизацией, не превышала нескольких миллисекунд.

Изохронные передачи классифицируются по способу синхронизации конечных точек - источников или получателей данных - с системой: различают асинхронный, синхронный и адаптивный классы устройств, каждому из которых соответствует свой тип канала USB.

Протокол

Все обмены (транзакции) по USB состоят из трех пакетов. Каждая транзакция планируется и начинается по инициативе контроллера, который посылает пакет-аркер (Token Packet). Он описывает тип и направление передачи, адрес ус-тройства USB и номер конечной точки. В каждой транзакции возможен обмен только между адресуемым устройством (его конечной точкой) и хостом. Адресуемое маркером устройство распознает свой адрес и готовится к обмену. Источник данных (определенный маркером) передает пакет данных (или уведомление об отсутствии данных, предназначенных для передачи). После успешного приема пакета приемник данных посылает пакет подтверждения (Handshake Packet).

Планирование транзакций обеспечивает управление поточными каналами. На аппаратном уровне использование отказа от транзакции (NAck) при недопустимой интенсивности передачи предохраняет буферы от переполнения сверху и снизу. Маркеры отвергнутых транзакций повторно передаются в свободное для шины время. Управление потоками позволяет гибко планировать обслуживание одновременных разнородных потоков данных.

Устойчивость к ошибкам обеспечивают следующие свойства USB:

Ø Высокое качество сигналов, достигаемое благодаря дифференциальным приемникам/передатчикам и экранированным кабелям.

Ø Защита полей управления и данных CRC-кодами.

Ø Обнаружение подключения и отключения устройств и конфигурирование ресурсов на системном уровне.

Ø Самовосстановление протокола с тайм-аутом при потере пакетов.

Ø Управление потоком для обеспечения изохронности и управления аппаратными буферами.

Ø Независимость функций от неудачных обменов с другими функциями.

Для обнаружения ошибок передачи каждый пакет имеет контрольные поля CRC-кодов, позволяющие обнаруживать все одиночные и двойные битовые ошибки. Аппаратные средства обнаруживают ошибки передачи, а контроллер автоматически производит трехкратную попытку передачи. Если повторы безуспешны, сообщение об ошибке передается клиентскому ПО.

Устройства USB - функции и хабы

Возможности шины USB позволяют использовать ее для подключения разнообразных устройств. Не касаясь "полезных" свойств ПУ, остановимся на их интерфейсной части, связанной с шиной USB. Все устройства должны поддерживать набор общих операций, перечисленных ниже. Динамическое подключение и отключение. Эти события отслеживаются хабом, который сообщает о них хост-контроллеру и выполняет сброс подключенного устройства. Устройство после сигнала сброса должно отзываться на нулевой адрес, при этом оно не сконфигурировано и не приостановлено. После назначения адреса, за которое отвечает хост-контроллер, устройство должно отзываться только на свой уникальный адрес.

Конфигурирование устройств, выполняемое хостом, является необходимым для их использования. Для конфигурирования обычно используется информация, считанная из самого устройства. Устройство может иметь множество интерфейсов, каждому из которых соответствует собственная конечная точка, представляющая хосту функцию устройства. Интерфейс в конфигурации может иметь альтернативные наборы характеристик; смена наборов поддерживается протоколом. Для поддержки адаптивных драйверов дескрипторы устройств и интерфейсов имеют поля класса, подкласса и протокола.

Передача данных возможна посредством одного из четырех типов передач (см. выше). Для конечных точек, допускающих разные типы передач, после конфигурирования доступен только один из них.

Управление энергопотреблением является весьма развитой функцией USB. Для устройств, питающихся от шины, мощность ограничена. Любое устройство при подключении не должно потреблять от шины ток, превышающий 100 мА. Рабочий ток (не более 500 мА) заявляется в конфигурации, и если хаб не сможет обеспечить устройству заявленный ток, оно не конфигурируется и, следовательно, не может быть использовано.

Устройство USB должно поддерживать приостановку (Suspended Mode), в котором его потребляемый ток не превышает 500 мкА. Устройство должно автоматически приостанавливаться при прекращении активности шины.

Возможность удаленного пробуждения (Remote Wakeup) позволяет приостановленному устройству подать сигнал хосткомпьютеру, который тоже может находиться в приостановленном состоянии. Возможность удаленного пробуждения описывается в конфигурации устройства. При конфигурировании эта функция может быть запрещена.

Хаб в USB выполняет коммутацию сигналов и выдачу питающего напряжения, а также отслеживает состояние подключенных к нему устройств, уведомляя хост об изменениях. Хаб состоит из двух частей - контроллера (Hub Controller) и повторителя (Hub Repeater). Повтори Повторитель представляет собой управляемый ключ, соединяющий выходной порт со входным. Он имеет средства поддержки сброса и приостановки передачи сигналов. Контроллер содержит регистры для взаимодействия с хостом. Доступ к регистрам осуществляется по специфическим командам обращения к хабу. Команды позволяют конфигурировать хаб, управлять нисходящими портами и наблюдать их состояние.

Нисходящие (Downstream) порты хабов могут находиться в следующих состояниях:

Ø Powered (питание отключено) - на порт не подается питание (возможно только для хабов, коммутирующих питание). Выходные буферы переводятся в высокоимпедансное состояние, входные сигналы игнорируются.

Ø Disconnected (отсоединен) - порт не передает сигналы ни в одном направлении, но способен обнаружить подключение устройства (по отсутствию состояния SEO в течение 2,5 мкс). Тогда порт переходит в состояние Disabled, а по уровням входных сигналов {DiffO или Diff1 в состоянии Idle) он определяет скорость подключенного устройства.

Ø Disabled (запрещен) - порт передает только сигнал сброса (по команде от контроллера), сигналы от порта (кроме обнаружения отключения) не воспринимаются. По обнаружении отключения (2,5 мкс состояния SEO) порт переходит в состояние Disconnect, а если отключение обнаружено "спящим" хабом, контроллеру будет послан сигнал Resume.

Ø Enabled (разрешен) - порт передает сигналы в обоих направлениях. По команде контроллера или по обнаружении ошибки кадра порт переходит в состояние Disabled, а по обнаружении отключения - в состояние Disconnect.

Ø Suspended (приостановлен) - порт передает сигнал перевода в состояние останова ("спящий" режим). Если хаб находится в активном состоянии, сигналы через порт не пропускаются ни в одном направлении. Однако "спящий" хаб воспринимает сигналы смены состояния незапрещенных портов, подавая "пробуждающие" сигналы от активизировавшегося устройства даже через цепочку "спящих" хабов. Состояние каждого порта идентифицируется контроллером хаба с помощью отдельных регистров. Имеется общий регистр, биты которого отражают факт изменения состояния каждого порта (фиксируемый во время EOF). Это позволяет хост-контроллеру быстро узнать состояние хаба, а в случае обнаружения изменений специальными транзакциями уточнить состояние.

Хост-контроллер

Хост-компьютер общается с устройствами через контроллер. Хост имеет следующие обязанности:

Ø обнаружение подключения и отсоединения устройств USB;

Ø манипулирование потоком управления между устройствами и хостом;

Ø управление потоками данных;

Ø сбор статистики;

Ø обеспечение энергосбережения подключенными ПУ.

Ø Системное ПО контроллера управляет взаимодействием между устройствами и их ПО, функционирующим на хост-компьютере, для согласования:

Ø нумерации и конфигурации устройств;

Ø изохронных передач данных;

Ø асинхронных передач данных;

Ø управления энергопотреблением;

Ø информации об управлении устройствами и шиной.

Благодаря своей универсальности и способности эффективно передавать разнородный трафик шина USB применяется для подключения к PC самых разнообразных устройств. Она призвана заменить традиционные порты PC - СОМ и LPT, а также порты игрового адаптера и интерфейса MIDI. Спецификация USB 2.0 позволяет говорить и о подключении традиционных «клиентов» шин АТА и SCSI, а также захвате части ниши применения шины FireWire. Привлекательность USB придает возможность подключения/отключения устройств на ходу и возможность их использования практически сразу, без перезагрузки ОС. Удобна и возможность подключения большого количества (до 127) устройств к одной шине, правда, при наличии хабов. Хост-контроллер интегрирован в большинство современных системных плат. Выпускаются и карты расширения с контроллерами USB (обычно для шины PCI). Однако повсеместное применение USB сдерживается недостаточной активностью разработчиков ПО (производителей оборудования): просматривая перечни устройств, мы видим, что для всех указывается поддержка в Windows 98/SE/ME, а вот в графах Linux, MacOS, Unix и даже Windows 2000 часто стоят неприятные пометки N/A (Not Allowed - «не дозволено»).
Для того чтобы система USB заработала, необходимо, чтобы были загружены драйверы хост-контроллера (или контроллеров, если их несколько). При подключении устройства к шине USB ОС Windows выдает сообщение «Обнаружено новое устройство» и, если устройство подключается впервые, предлагает загрузить для него драйверы. Многие модели устройств уже известны системе, и драйверы входят в дистрибутив ОС. Однако может потребоваться и драйвер изготовителя устройства, который должен входить в комплект поставки устройства, или его придется искать в Сети. К сожалению, не все драйверы работают корректно - «сырой» драйвер начальной версии, возможно, потребуется заменить более «правильным», чтобы устройство нормально опознавалось и хорошо работало. Но это общее горе пользователей любых устройств, а не только устройств для шины USB.
Перечислим основные области применения USB.
* Устройства ввода - клавиатуры, мыши, трекболы, планшетные указатели и т. п. Здесь USB предоставляет для различных устройств единый интерфейс. Целесообразность использования USB для клавиатуры неочевидна, хотя в паре с мышью USB (подключаемой к порту хаба, встроенного в клавиатуру) сокращается количество кабелей, тянущихся от системного блока на стол пользователя.
* Принтеры. USB 1.1 обеспечивает примерно ту же скорость, что и LPT-порт в режиме ЕСР, но при использовании USB не возникает проблем с длиной кабеля и подключением нескольких принтеров к одному компьютеру (правда, требуются хабы). USB 2.0 позволит ускорить печать в режиме высокого разрешения за счет сокращения времени на передачу больших массивов данных. Однако есть проблема со старым ПО, которое непосредственно работает с LPT-портом на уровне регистров, - на принтер USB оно печатать не сможет.
* Сканеры. Применение USB позволяет отказаться от контроллеров SCSI или от занятия LPT-порта. USB 2.0 при этом позволит еще и повысить скорость передачи данных.
* Аудиоустройства - колонки, микрофоны, головные телефоны (наушники). USB позволяет передавать потоки аудиоданных, достаточные для обеспечения самого высокого качества. Передача в цифровом виде от самого источника сигнала (микрофона со встроенным преобразователем и адаптером) до приемника и цифровая обработка в хост-компьютере позволяют избавиться от наводок, свойственных аналоговой передачи аудиосигналов. Использование этих аудиокомпонентов позволяет в ряде случаев избавиться от звуковой карты компьютера - аудиокодек (АЦП и ЦАП) выводится за пределы компьютера, а все функции обработки сигналов (микшер, эквалайзер) реализуются центральным процессором чисто программно. Аудиоустройства могут и не иметь собственно колонок и микрофона, а ограничиться преобразователями и стандартными гнездами («Джеками») для подключения обычных аналоговых устройств.
* Музыкальные синтезаторы и MIDI-контроллеры с интерфейсом USB. Шина USB позволяет компьютеру обрабатывать потоки множества каналов MIDI (пропускная способность традиционного интерфейса MIDI уже гораздо ниже возможностей компьютера).
* Видео- и фотокамеры. USB 1.1 позволяет передавать статические изображения любого разрешения за приемлемое время, а также передавать поток видеоданных (живое видео) с достаточной частотой кадров (25-30 Кбит/с) только с невысоким разрешением или сжатием данных, от которого, естественно, страдает качество изображения. USB 2.0 позволяет передавать поток видеоданных высокого разрешения без сжатия (и потери качества). С интерфейсом USB выпускают как камеры, так и устройства захвата изображения с телевизионного сигнала и TV-тюнеры.
* Коммуникации. С интерфейсом USB выпускают разнообразные модемы, включая кабельные и xDSL, адаптеры высокоскоростной инфракрасной связи (IrDA FIR) - шина позволяет преодолеть предел скорости СОМ-порта (115, 2 Кбит/с), не повышая загрузку центрального процессора. Выпускаются и сетевые адаптеры Ethernet, подключаемые к компьютеру по USB. Для соединения нескольких компьютеров в локальную сеть выпускаются специальные устройства, выполняющие коммутацию пакетов между компьютерами. Непосредственно (без дополнительных устройств) портами USB соединить между собой даже два компьютера нельзя - на одной шине может присутствовать лишь один хост-контроллер (см. выше). Специальное устройство для связи пары компьютеров выглядит как «таблетка», врезанная в кабель USB с двумя вилками типа «А» на концах. Объединение более двух компьютеров осложняется и топологическими ограничениями USB: длина одного сегмента кабеля не должна превышать 5 м, а использовать хабы для увеличения дальности неэффективно (каждый хаб дает всего 5 м дополнительного удаления).
* Преобразователи интерфейсов позволяют через порт USB, имеющийся теперь практически на всех компьютерах, подключать устройства с самыми разнообразными интерфейсами: Centronics и IEEE 1284 (LPT-порты), RS-232C (эмуляция UART 16550A - основы СОМ-портов) и другие последовательные интерфейсы (RS-422, RS-485, V. 35...), эмуляторы портов клавиатуры и даже Game-порта, переходники на шину AT A, ISA, PC Card и любые другие, для которых достаточно производительности. Здесь USB становится палочкой-выручалочкой, когда встает проблема 2-го (3-го) LPT- или СОМ-порта в блокнотном ПК и в других ситуациях. При этом ПО преобразователя может обеспечить эмуляцир классического варианта «железа» стандартных портов IBM PC, но только под управлением ОС защищенного режима. Приложение MS-DOS может обращаться к устройствам по адресам ввода-вывода, памяти, прерываниями, каналами DMA, но только из сеанса MS-DOS, открытого в ОС с поддержкой USB (чаще это Windows). При загрузке «голой» MS-DOS «палочка-выручалочка» не работает. Преобразователи интерфейсов позволяют продлить жизнь устройствам с традиционными интерфейсами, изживаемыми из PC спецификациями РС"99 и РС"2001. Скорость передали данных через конвертер USB - LPT может оказаться даже выше, чем у реального LPT-порта, работающего в режиме SPP.
* Устройства хранения - винчестеры, устройства чтения и записи CD и DVD, стриммеры - при использовании USB 1.1 получают скорость передачи, соизмеримую со скоростью их подключения к LPT, но более удобный интерфейс (как аппаратный, так и программный). При переходе на USB 2.0 скорость передачи данных становится соизмеримой с АТА и SCSI, а ограничений по количеству устройств достичь трудно. Особенно интересно использование USB для электронных устройств энергонезависимого хранения (на флэш-памяти) - такой накопитель может быть весьма компактным (размером с брелок для ключей) и емким (пока 16-256 Мбайт, в перспективах - гигабайт и более). Выпускаются устройства для мобильного подключения накопителей с интерфейсом АТА-AT API - по сути, это лишь преобразователи интерфейсов, помещенные в коробку-отсек формата 5" или 3, 5", а иногда выполненные прямо в корпусе 36-контактного азъема АТА. Имеются и устройства чтения-записи карт SmartMedia Card и CompactFlash Card.
* Игровые устройства - джойстики всех видов (от «палочек» до автомобильных рулей), пульты с разнообразными датчиками (непрерывными и дискретными) и исполнительными механизмами (почему бы не сделать кресло автогонщика с вибраторами и качалками?) - подключаются унифицированным способом. При этом исключается ресурсопожирающий интерфейс старого игрового адаптера (упраздненного уже в спецификации РС"99).
* Телефоны - аналоговые и цифровые (ISDN). Подключение телефонного аппарата позволяет превратить компьютер в секретаря с функциями автодозвона, автоответчика, охраны и т. п.
* Мониторы - здесь шина USB используется для управления параметрами монитора. Монитор сообщает системе свой тип и возможности (параметры синхронизации) - это делалось и без USB по шине DDC. Однако USB-мониторы позволяют системе еще и управлять ими - регулировки яркости, контраста, цветовой температуры и т. п. могут теперь выполняться программно, а не только от кнопок лицевой панели монитора. В мониторы, как правило, встраивают хабы. Это удобно, поскольку настольную периферию не всегда удобно включать в «подстольный» системный блок.
* Электронные ключи - устройства с любым уровнем интеллектуальности защиты - могут быть выполнены в корпусе вилок USB. Они гораздо компактнее и мобильнее аналогичных устройств для СОМ- и LPT-портов.
Конечно же, перечисленными классами устройств сфера применения шины USB не ограничивается.
Хабы USB выпускаются как в виде отдельных устройств, так и встраиваются в периферийные устройства (клавиатуры, мониторы). Как правило, хабы питаются от сети переменного тока (они должны питать подключаемые устройства). Выпускают и хабы, устанавливаемые внутрь системного блока компьютера и питающиеся от его блока питания. Такие хабы дешевле внешних и не требуют дополнительной питающей розетки. Один из вариантов исполнения - установка хаба на скобку, монтируемую в окно для дополнительных разъемов. Доступ к их разъемам со «спины» системного блока не очень удобен для пользователей. Другой вариант - хаб, устанавливаемый в 3"-отсек. Его разъемы легкодоступны, индикаторы состояния портов хорошо видны, но не всегда удобны кабели, выходящие с передней панели системного блока. С другой стороны, для подключения электронных ключей (если их приходится часто менять) или миниатюрных накопителей этот вариант - самый удобный.
Недавно появились и новые вспомогательные устройства, увеличивающие дальность связи (distance extender). Это пара устройств, соединяемых между собой обычным кабелем «витая пара» (или оптоволокном), включаемая между периферийным устройством и хабом. «Удлинитель» со стороны периферии может иметь и хаб на несколько портов. К сожалению, увеличение дистанции упирается в ограничения на время задержки сигнала, свойственные протоколу шины USB, и достижимо лишь удаление до 100 м. Но даже и эта длина позволяет расширить сферу применения USB, например для удаленного видеонаблюдения.


Стандарты USB 1.1 и 2.0

Универсальная последовательная шина USB (Universal Serial Bus) является еще одним последовательным интерфейсом. Поскольку это самый популярный последовательный интерфейс, то он заслуживает отдельной главы.

Шина USB позволяет последовательное подсоединение до 127 устройств (вы можете подключать устройство к устройству, если производитель устройства предусмотрел такую возможность). Как и в случае с IEEE, поддерживается «горячее» отключение/подключение устройств, то есть вам для подключения/отключения устройства не нужно выключать питание компьютера. Более того, как и в случае с IEEE, устройства могут получать питание по шине USB, что позволяет обходиться без дополнительных блоков питания.

Шина USB появилась в январе 1996 года – тогда была анонсирована версия USB 1.0. Два года спустя, в 1998 году, появилась шина USB 1.1. Практически все устройства версии 1.0 совместимы с USB 1.1, и наоборот – просто изменения были незначительные.

Шина USB 2.0 появилась в 2003 году. Она обратно совместима с версиями 1.0 и 1.1. Это означает, что к шине USB 2.0 можно подключить устройства версии 1.0 и 1.1. Определить версию устройства очень легко – по логотипу USB. На рис. 10.1 изображен логотип USB версий 1.0 и 1.1 (сейчас чаще встречается устройство версии 1.1), а на рис. 10.2 – логотип USB 2.0.

Рис. 10.1. Логотип usb 1.1: старый (слева) и новый (справа)

Рис. 10.2. Логотип usb 2.0

Технические характеристики шины USB 1.1 приведены в табл. 10.1.
//-- Таблица 10.1. Технические характеристики шины USB1.1 --//


Обратите внимание, что шина USB 1.1 может работать в двух режимах: в низкоскоростном и высокоскоростном. В первом скорость обмена составляет 1,5 Мбит/с, во втором – 12 Мбит/с.
Технические характеристики шины USB 2.0 практически такие же, но для USB 2.0 предусмотрено три скоростных режима:
Low-speed (скорость 10–1500 Кбит/c) – для устройств ввода (клавиатуры, мыши, джойстиков);
Full-speed (0,5–12 Мбит/с) – различные среднескоростные устройства;
Hi-speed (5–480 Мбит/с) – носители данных, видеоустройства.

Подключение USB-устройств

На задней стенке системного блока обычно можно обнаружить четыре USB-порта (иногда 6 или даже 8). Данные порты (рис. 10.3) принадлежат к корневым концентраторам USB. У каждого корневого концентратора есть два USB-порта. Следовательно, если у вас на системной плате четыре USB-порта, то всего в системе два корневых концентратора, если восемь портов – в системе четыре корневых концентратора.

//-- Рис. 10.3. USB-порты --//
Откройте Диспетчер устройств (для этого выполните команду Пуск, Настройка, Панель управления, Система, перейдите на вкладку Оборудование и нажмите кнопку Диспетчер устройств). В окне Диспетчера устройств раскройте группу Контроллеры универсальной последовательной шиныUSB (рис. 10.4).

//-- Рис. 10.4. Диспетчер устройств --//
Щелкните правой кнопкой по любому корневому концентратору и выберите команду Свойства. В появившемся окне перейдите на вкладку Питание. Вы увидите следующую информацию (рис. 10.5):
тип питания концентратора – наш концентратор корневой, поэтому имеет свое собственное питание;
информацию о подключенных к портам концентратора устройствах и об их питании – в нашем случае подключено одно устройство и оно требует питания в 100 мА. Максимум наш концентратор может передать до 500 мА на порт;
количество свободных портов – у корневого концентратора всего два порта, один из них занят (подключено запоминающее устройство – USB-диск), поэтому свободен один порт.

//-- Рис. 10.5. Подробная информация о концентраторе --//
Если у вас всего два концентратора и к каждому можно подключить всего два устройства, то как, спрашивается, можно подключить к компьютеру до 127 USB-устройств? Во-первых, к портам корневого концентратора вы можете подключить дополнительные USB-концентраторы (рис. 10.6). USB-концентратор подключается к USB-порту, но взамен предоставляет как минимум три свободных USB-порта. Бывают два типа USB-концентраторов: с собственным питанием и с питанием от родительского порта. Лучше покупать концентраторы с собственным питанием. Почему? Как мы знаем, на один порт передается сила тока максимум 500 мА; 100 мА потребуется для питания самого концентратора, поэтому для устройств останется 400 мА. Выходит, что к каждому порту такого концентратора вы уже не сможете подключить какое-либо мощное USB-устройство, а сможете подключать устройства вроде USB-дисков, которым необходимо всего 100 мА.

//-- Рис. 10.6. USB-концентратор --//
Если же концентратор будет обладать собственным питанием, то можно будет обеспечить по 500 мА на каждый порт, то есть USB-порты будут полноценными, как на корневых концентраторах.
Кроме того, некоторые устройства, например клавиатура, могут выступать в роли USB-концентратора (данные устройства должны быть USB-устройствами). Вы подключаете клавиатуру к USB-порту, а к ней можно подключить еще несколько устройств. Обычно к клавиатуре подключают USB-мыши и иногда USB-дис-ки. Понятно, что данные устрой ства должны быть не «обжорливыми», поскольку всего на порт подаются те самые 500 мА; 100 мА уходит на питание клавиатуры, а остальное делится между подключенными к клавиатуре устройствами. Учитывая такое иерархическое подключение устройств, несложно себе представить всего 127 подключенных к компьютеру устройств. Это же не 63 000, как в случае с IEEE-1394!
Теперь о разъемах USB. Разъемы, имеющиеся на задней стенке системного блока (самые обычные USB-разъемы), называются USB типа А. Кабель для разъема типа А изображен на рис. 10.7.

//-- Рис. 10.7. Кабель типа А --//
Разъем и кабель типа B изображены на рис. 10.8. Обычно разъем типа B используется на периферийных устройствах (принтерах, сканерах). USB-кабель для подключения периферийного устройства к компьютеру (рис. 10.9) оснащен разъемом типа B (для подклю че-ния к прин теру/сканеру) и разъемом типа A (для подключения к компьютеру).

//-- Рис. 10.8. Разъем (гнездо) и кабель типа B --//
//-- Рис. 10.9. Кабель для подключения USB-принтера --//
Кроме разъемов типа A и B, есть еще мини-разъем, который так и называется – mini-USB (рис. 10.10). Обычно он используется для подсоединения USB-кабеля к цифровому фотоаппарату, мобильному телефону. При этом один конец кабеля – mini-USB, а второй – типа A.

//-- Рис. 10.10. Кабель mini-USB --//

Модернизация старых компьютеров

На старых компьютерах нет USB-портов, но можно установить USB-кон-троллер, выполненный в виде PCI-платы расширения (рис. 10.11) или в виде PC-карты (для ноутбуков). При покупке контроллера убедитесь, что он поддер живает USB 2.0 (рис. 10.12) – если ставить, то самое новое.

//-- Рис. 10.11. USB-контроллер в виде PCI-платы (4 USB-порта) --//

//-- Рис. 10.12. Двухпортовая РС-карта (добавляет поддержку USB в старый ноутбук) --//
Иногда компьютер не очень старый – поддержка USB есть, но версии 1.1, а нужно подключить устройство USB 2.0. В этом случае тоже поможет PCI-контроллер. Еще раз повторюсь: при покупке нужно убедиться, что вы покупаете именно контроллер USB 2.0.

В настоящее время стандарт USB 3.0 еще не принят, но уже находится на стадии разработки. Предполагается, что он будет передавать сигналы с помощью оптоволоконного кабеля. USB 3.0 будет обратно совместим с версиями 2.0 и 1.1.
Сейчас над созданием USB 3.0 работают следующие компании: Intel, Microsoft, Hewlett-Packard, Texas Instruments, NEC и NXP Semiconductors. Планируемая скорость передачи данных (пиковая) – 4,8 Гбит/с.

Поддерживает ли ваша система USB

Казалось бы, если есть USB-порты, то и поддержка USB тоже должна быть. Но это не всегда так. Например, в Windows 2000 и в Windows XP SP1 нет драйвера для USB 2.0. Даже если у вас контроллер USB 2.0, то без установки драйвера для USB 2.0 шина USB будет работать как USB 1.1.
Скачайте программу USB Ready по адресу http://www.usb.org/about/ faq/ans3/usbready.exe, которая протестирует вашу систему на предмет наличия поддержки USB (рис. 10.13).

//-- Рис. 10.13. Программа usb ready --//
Что же делать тем, у кого новый USB-контроллер? Есть несколько вариантов:
установить новую версию ОС – Windows Vista, но это стоит не дешево;
обновить версию ОС до Windows XP SP2; установить драйвер USB 2.0.

Далеко не всегда хочется переустанавливать хорошо работающую систему. Тогда будем искать драйвер. Иногда он поставляется вместе с материнской платой – тогда вам повезло. Но если его в комплекте нет, тогда будем искать его в Интернете. Самое интересное, что на сайте Microsoft его уже нет. Я нашел нужный драйвер на сайте softodrom.ru:
http://soft.softodrom.ru/ap/p4515.shtml.
Если к моменту выхода книги из печати его там уже не будет, обращайтесь ко мне – я поделюсь им с вами.